Extended Refinery Gas and Trace Sulfur Analysis

Configuration of an Agilent Technologies 7890 Series Gas Chromatograph with flame ionization, sulfur chemiluminescence and dual thermal conductivity detectors (FID/SCD/TCD) for the extended refinery gases and trace sulfurs.

Two separate methods will be developed. Please note that these methods cannot be run simultaneously.

Method 1 performs the trace impurities analysis in polymer-grade ethylene.

Components analyzed on TCD 1 include:

• Carbon dioxide	Argon/oxygen composite
• Ethane	Nitrogen
• Ethylene	• Methane
 Acetylene 	Carbon monoxide
Hydrogen sulfide	

Lower quantifiable limit of 400 ppm except for carbon monoxide (800 ppm) and hydrogen sulfide (1000 ppm). TCD 2 detects hydrogen to a lower quantifiable limit of 200 ppm.

Components analyzed on the FID include: C1 through C7 paraffins and olefins.

Determined Components during method development include:

 Methane Ethane Ethylene Propane Propylene Acetylene Isobutane Propadiene n-Butane t-2-Butene 	 1-Butene Isobutene c-2-Butene Neopentane Isopentane Methyl acetylene n-Pentane 1,3-Butadiene 3-Methyl-1-butene t-2-Pentene 	 2-Methyl-2-butene 1-Pentene 2-Methyl-1-butene c-2-Pentene Neohexane n-Hexane n-Heptane Benzene Initial toluene/C8+ backflush
---	---	--

An analysis time of less than 15 minutes is expected for Method 1. Requires split/splitless capillary inlet with Electronic Pressure Control.

Method 2 – Sulfurs in Gaseous Fuels

The SCD Determined Components in gas phase samples to a lower quantifiable limit of 0.02 ppm:

 Hydrogen sulfide Carbonyl sulfide Sulfur dioxide Methanethiol Ethanethiol Dimethyl sulfide 	 Carbon disulfide 2-Propanethiol 2-methyl-2-propanethiol 1-Propanethiol Ethyl methyl sulfide 2-Butanethiol 	 Thiophene Diethyl sulfide 1-Butanethiol Dimethyl disulfide Diethyldisulfide
·		

Analysis will be developed per ASTM D5504: "Standard Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Chemiluminescence." Heavier Sulfur compounds will be detected, but may have some compounds co-eluting.